RegBounds: Region Boundaries

Summary

Describes how spatial region boundaries are handled.

Description

The golden rule for spatial region filtering was first enunciated by Leon VanSpeybroeck in 1986:

Each photon will be counted once, and no photon will be counted more than once.

This means that we must be careful about boundary conditions. For example, if a circle is contained in an annulus such that the inner radius of the annulus is the same as the radius of the circle, then photons on that boundary must always be assigned to one or the other region. That is, the number of photons in both regions must equal the sum of the number of photons in each region taken separately. With this in mind, the rules for determining whether a boundary image pixel or table row are assigned to a region are defined below.

Image boundaries : radially-symmetric shapes (circle, annuli, ellipse)

or image filtering, pixels whose center is inside the boundary are included. This also applies non-radially-symmetric shapes. When a pixel center is exactly on the boundary, the pixel assignment rule is: In this way, an annulus with radius from 0 to 1, centered exactly on a pixel, includes the pixel on which it is centered, but none of its neighbors. These rules ensure that when defining concentric shapes, no pixels are omitted between concentric regions and no pixels are claimed by two regions. When applied to small symmetric shapes, the shape is less likely to be skewed, as would happen with non-radially-symmetric rules. These rules differ from the rules for box-like shapes, which are more likely to be positioned adjacent to one another.

Image Boundaries: non-radially symmetric shapes (polygons, boxes)

For image filtering, pixels whose center is inside the boundary are included. This also applies radially-symmetric shapes. When a pixel center is exactly on the boundary of a non-radially symmetric region, the pixel is included in the right or upper region, but not the left or lower region. This ensures that geometrically adjoining regions touch but don't overlap.


Other pages of interest:
Last updated: August 7, 2015